
IT ISD Complex Relational Algebra / SQL Tutorial 8

University of Glasgow
Dip / MSc Information Technology

Information Systems and Databases

Tutorial Week 8 – More SQL

Richard Cooper

November 19th 2009

1. The following is the schema of the bank account database:

customer(ID, forename, surname, sex, address, occupation)
account(accountno, type, balance, dateOpened, inBranch)
owner(accno, custID)
branch(branchNo, braddress, manager)
employee(staffNo, forename, surname, empbranch, supervisor)

 Give relational algebra programs and SQL queries to retrieve the following:

h) The types of account for which there is at least 1 instance with a negative balance.

RA NegAccs ← σ balance < 0 (Account) // all accounts with a negative balance
 NegTypes ←π type (NegAccs) // pick out types - duplicates removed

SQL SELECT DISTINCT Type // In SQL we have to say remove
 FROM Account // duplicates with the DISTINCT keyword
 WHERE Balance < 0;

i) The types of account for which there are no instances with a negative balance.

 We can't just turn the "<" to a ">" as we get all the account types with both
positive and negative balances, we must removed the previous answer from the
set of account types:

RA NegAccs ← σ balance < 0 (Account)
 NegTypes ← π type (NegAccs) // i.e. the answer to (h)
 AllTypes ← π type (Account) // all the account types
 Result ← AllTypes – NegTypes // all the types not in answer (h)

SQL Three alternatives are given here:
a) SELECT DISTINCT type // select types which are not in the set of
 FROM Account
 MINUS
 SELECT DISTINCT type FROM Account // types with a negative balance
 WHERE balance < 0;

b) SELECT DISTINCT type // select type
 FROM Account
 WHERE type NOT IN // if not in
 (SELECT type // the list of types with a –ve balance
 FROM Account WHERE balance < 0);

IT ISD Complex Relational Algebra / SQL Tutorial 8

c) SELECT DISTINCT A1.type // select type
 FROM Account A1
 WHERE NOT EXISTS // if there is not an account
 (SELECT * // with the same type and –ve balance
 FROM ACCOUNT A2
 WHERE A2.balance < 0 AND A1.type = A2.type);

i) The branch number and address of all branches except those which have deposit
accounts with a negative balance.

Find the set of branch numbers which have a deposit account with a negative
balance and remove these from the set of all branches, before joining back to get
the columns we need.

RA NegDepAccs ← σ type= ‘deposit’ and balance < 0 (Account)
 PosBrNum ← π branchNo (Branch) - π inBranch (NegDepAccs)
 PosBrs ←= PosBrNums inBranch = branchNo Branch)
 Result ← π branchNo, brAddress (PosBrs)

SQL SELECT branchNo, brAddress FROM Branch
 WHERE branchNo NOT IN
 (SELECT inBranch FROM ACCOUNT // the branch numbers we
 // don't want
 WHERE type = 'deposit' AND balance < 0);

j) The types of account that occur at every branch.

 Clue - Question : Where? Answer : Every
 For the bank database, the type ‘current’ is the only one to occur in every branch.

RA AccBr ← π type, inBranch (Account) pairs of type/branch
 AllBr ← π branchNo (Branch) list of all branches
 Result ← AccBr ÷ AllBr The divide gives any account types that
 occur in the paired list for every branch

SQL using double negative
 SELECT DISTINCT A1.type Select account type
 FROM Account A1
 WHERE NOT EXISTS if there isn’t any branch which
 (SELECT * FROM Branch doesn’t have this type
 WHERE branchNo NOT IN
 (SELECT inBranch List of branches with this type
 FROM Account A2
 WHERE A1.type = A2.type)
);

 SELECT DISTINCT A1.type Select account type
 FROM Account A1
 WHERE NOT EXISTS if there isn’t any branch which
 ((SELECT DISTINCT branchNo FROM Branch)
 MINUS doesn’t have this type
 (SELECT inBranch FROM Account A2 WHERE A2.Type = A1.Type));

IT ISD Complex Relational Algebra / SQL Tutorial 8

This query selects all the type/branch pairs that might exist and subtracts from them
all the type/branch pairs that do exist, thus leaving all the type/branch pairs that do
not exist. Then it removes the types that are in this list from the list of all types.

Suggestion : alter bank database so that there is one (or more) branches containing
every type of account. Find them with SQL.

k) The staff number and name of all the employees including, for managers, the
branch number and address of the branch that they manage (one query).

 This needs an outer join to keep the employee data even those who are not
managers:.
RA EmpMans ← Employee left Outer Join staffno = manager Branch
 Result ← π staffno, forename, surname, branchno, brAddress EmpMans

SQL SELECT staffno, forename, surname, branchno, braddress
 FROM Employee LEFT OUTER JOIN Branch ON manager = staffno;

2. Write and run SQL queries to perform the following:

a) Find the full names and addresses of all customers who have accounts which have a
negative balance (i) in name order, (ii) in overdraft order (largest first), (iii) in overdraft
order (smallest first)

 SELECT DISTINCT forename, surname, address, balance
 FROM Customer, Owner, Account
 WHERE id = custId AND accountNo = accno AND balance < 0
(i) ORDER BY surname, forename;
(ii) ORDER BY balance;
(iii)ORDER BY balance DESC;

b Find how many current accounts owned by students have positive balances and how
many have negative balances

 SELECT COUNT(DISTINCT accountNo)
 FROM Account, Customer, Owner
 WHERE accno = accountNo AND id = custId AND type =
'current'
 AND occupation = 'Student' AND balance < 0;

 Repeat for balance > 0

NB COUNT(*) counts the rows, so you can always use * unless you are counting
distinct occurrences, when you need to specify DISTINCT and the column name.
Otherwise you can specify any column name, all the rows will be counted.

c For each branch, find the total number of accounts held at the branch and the total
sum of money contained in those accounts

 SELECT inBranch Branch, COUNT(*) NumAccs, SUM(balance) TotBal
 FROM Account
 GROUP BY inBranch;

IT ISD Complex Relational Algebra / SQL Tutorial 8

d Find the average number of employees associated with each branch

 Use nested query to get numbers of staff for each branch. Rename this column.
 SELECT avg(numStaff)
 FROM

 (SELECT count(*) numStaff, empBranch
 FROM Employee
 GROUP BY empbranch);

 Or could use a View for the nested query

e Find the average balance in accounts for each branch which has more than 3 accounts.

 SELECT inBranch, AVG(balance)
 FROM Account
 GROUP BY inBranch
 HAVING COUNT(*) > 3;

f Find the average balance in current accounts for each branch in which there is more
than one current account.

 SELECT inBranch, AVG(balance)
 FROM Account
 WHERE type = ‘current’
 GROUP BY inBranch
 HAVING COUNT(*) > 1;

g Create a View which shows the account number, customer names, and type of
account. Then use the view to find the names of customers with a deposit account.

 CREATE VIEW AccNameType AS
 SELECT accountNo, type, forename, surname
 FROM Account, Customer, Owner
 WHERE accountNo = accNo AND custID = id;

 Here is an example of using it:

 SELECT forename, surname FROM AccNameType
 WHERE type = ‘deposit’;

h Create a View which shows the staff number and name of each employee together
with the staff number and name of their supervisor.. (see (g))

 CREATE VIEW Supervisees AS
 SELECT E1.staffNo, E1.forename, E2.Surname,
 E2.StaffNo SupSNo, E2.forename SupFName, E2.surname SupSName
 FROM Employee E1, Employee E2
 WHERE E1.supervisor = E2.staffNo;

IT ISD Complex Relational Algebra / SQL Tutorial 8

i Write queries b & c as parameterised queries.

SELECT accountNo, type, balance
FROM Account
WHERE inBranch = &Branch;

SELECT id, surname
FROM Customer, Owner
WHERE custID = id AND accNo = &Account_Number;

j Transfer £200 from the deposit account 23507 to the current account 23505

 This code illustrates transactions..
 Do a different update first
 UPDATE Account Set balance = balance + 100 WHERE accountNo =
23507;
 SELECT balance from Account Where accountno = 23507;

 Start a transaction by committing previous updates
 COMMIT;
 Alternatively, setting transaction
 SET TRANSACTION READ WRITE;

 Update balance
 UPDATE ACCOUNT SET balance = balance - 200
 WHERE accountNo = 23507;
 UPDATE ACCOUNT SET balance = balance + 200
 WHERE accountNo = 23505;
 COMMIT;

k Transfer member of staff no 287 from branch 6 to branch 3

 UPDATE EMPLOYEE
 SET empBranch = 3
 WHERE StaffNo = 287;

 What would happen if it was to branch 7?

Answer: (ORA-02291: integrity constraint (IT02_MONICA.FK_EBRANCH)
violated - parent key not found)

l Close account number 23524

 What if you try to delete the account?
 DELETE FROM ACCOUNT WHERE accountNo = 23524;

 Doesn't work because Owner record exists for this account

 Therefore Delete Owner record then Account record

 DELETE FROM Owner WHERE accNo = 23524;
 DELETE FROM Account WHERE accountNo = 23524;

 Thus works fine

IT ISD Complex Relational Algebra / SQL Tutorial 8

 Alternatively replace foreign key constraint with delete cascade, try delete again
 ALTER TABLE Owner DROP CONSTRAINT fk_OAcc;
 ALTER TABLE OWNER ADD CONSTRAINT fk_OAcc
 FOREIGN KEY (Accno) REFERENCES Account (accountNo) ON
DELETE CASCADE;
 DELETE FROM ACCOUNT WHERE accountNo = 23524;

 Now account and owner record are both deleted

m Close branch number 6 and move all its staff to branch number 5

 Just don't try to delete Branch until related records are deleted
 UPDATE EMPLOYEE SET empBranch = 5 WHERE empBranch = 6;

 UPDATE ACCOUNT SET inBranch = 5 WHERE inBranch = 6;

 DELETE FROM Branch WHERE branchNo = 6;

n Remove all mention of customer 193 from the database

 Either delete related records first (i.e. from owner)
 COMMIT;
 DELETE FROM OWNER WHERE custID = 193;
 DELETE FROM CUSTOMER WHERE id = 193;
 COMMIT;

 Or alter foreign key constraint to cascade on delete

 ALTER TABLE OWNER DROP CONSTRAINT fk_OCust;
 ALTER TABLE Owner ADD CONSTRAINT fk_OCust

 FOREIGN KEY (custID) REFERENCES Customer (id)
 ON DELETE CASCADE;

 DELETE FROM CUSTOMER WHERE id = 193;
 Don’t leave behind accounts with no owners

o Find full details of any account for which there is no registered owner

 There aren't any such records, so I removed one first.
 I used COMMIT : ROLLBACK so that the delete wasn't permanent - I was just
using it to test my sql.

 COMMIT;
 DELETE FROM Owner where accno = 23512;

 SELECT *
 FROM ACCOUNT
 WHERE NOT EXISTS

 (SELECT * FROM OWNER
 WHERE accno = accountNo);

